
PS01 - Using the RemObjects Pascal Script
This article provides an overview of the new RemObjects Pascal Script and explains how to create some simple
scripts.

Pascal Script comprises two different parts:

Compiler (uPSCompiler.pas)

Runtime (uPSRuntime.pas)

The two parts have no interdependencies on each other. You can use them directly, or you can use them in the
TPSScript component, which can be found in the uPSComponent.pas unit, and wraps them both in one easy to use
class.

To use the component version of Pascal Script, you must first place it on your form or data module, set or assign
the script property, call the Compile method, and call the Execute method. Compile errors, warnings or hints can be
found in the CompilerMessages array property, while runtime errors can be found by reading the ExecErrorToString
property.

The following example will compile and execute an empty script ("begin end."):

var
 Messages: string;
 compiled: boolean;
begin
 ce.Script.Text := 'begin end.';
 Compiled := Ce.Compile;
 for i := 0 to ce.CompilerMessageCount -1 do
 Messages := Messages +
 ce.CompilerMessages[i].MessageToString +
 #13#10;
 if Compiled then
 Messages := Messages + 'Succesfully compiled'#13#10;
 ShowMessage('Compiled Script: '#13#10+Messages);
 if Compiled then begin
 if Ce.Execute then
 ShowMessage('Succesfully Executed')
 else
 ShowMessage('Error while executing script: '+
 Ce.ExecErrorToString);
 end;
end;

By default, the component only adds a few standard functions to the scripting engine (the exact list can be found at
the top of uPSComponents.pas).

Besides the standard functions, there are a few libraries included with Pascal Script:

 TPSDllPlugin
Allow scripts to use dll functions, the syntax is like:
function FindWindow(C1, C2: PChar): Longint;
external 'FindWindowA@user32.dll stdcall';

 TPSImport_Classes Import library for TObject and the Classes unit.

 TPSImport_DateUtils Import library for date/time related functions.

 TPSImport_ComObj Access COM Objects from your scripts.

 TPSImport_DB Import library for db.pas.

 TPSImport_Forms Import library for the Forms & Menus units.

 TPSImport_Controls Import library to Controls.pas and Graphics.pas.

To use these libraries, add them to your form or data module, select the [...] button next to the plugins property of
the TPSCompiler component, add a new item and set the Plugin property to the plugin component. Besides the
standard libraries, you can easily add new functions to the scripting engine. In order to do that, create a new
method you would like to expose to the scripting engine, for example:

procedure TForm1.ShowNewMessage(const Message: string);
begin
 ShowMessage('ShowNewMessage invoked:'#13#10+Message);
end;

Then, assign an event handler to the OnCompile event and use the AddMethod method of TPSCompiler to add the
actual method:

procedure TForm1.CECompile(Sender: TPSScript);
begin
 Sender.AddMethod(Self, @TForm1.ShowNewMessage,
 'procedure ShowNewMessage
 (const Message: string);');
end;

A sample script that uses this function could look like this:

begin
 ShowNewMessage('Show This !');
end.

Advanced Features
Pascal Script includes a preprocessor that allows you to use defines ({$IFDEF}, {$ELSE}, {$ENDIF}) and include
other files in your script ({$I filename.inc}). To enable these features, you must set the UsePreprocessor property
to true and the MainFileName property to match the name of the script in the Script property. The Defines property
specifies which defines are set by default, and the OnNeedFile event is called when an include file is needed.

function TForm1.ceNeedFile(Sender: TObject;
 const OrginFileName: String;
 var FileName, Output: String): Boolean;
var
 path: string;
 f: TFileStream;
begin
 Path := ExtractFilePath(ParamStr(0)) + FileName;
 try
 F := TFileStream.Create(Path, fmOpenRead or fmShareDenyWrite);
 except
 Result := false;
 exit;
 end;
 try
 SetLength(Output, f.Size);
 f.Read(Output[1], Length(Output));
 finally
 f.Free;
 end;
 Result := True;
end;

When these properties are set, the CompilerMessages array property will include the file name these messages
occur in.

Additionally, you can call scripted functions from Delphi. The following sample will be used as a script:

function TestFunction(Param1: Double; Data: String): Longint;
begin
 ShowNewMessage('Param1: '+FloatToString(param1)
 +#13#10+'Data: '+Data);
 Result := 1234567;
end;

begin
end.

Before this scripted function can be used, it has to be checked to match its parameter and result types, which can
be done in the OnVerifyProc event.

 TPSImport_StdCtrls Import library for ExtCtrls and Buttons.

procedure TForm1.CEVerifyProc(Sender: TPSScript;
 Proc: TPSInternalProcedure;
 const Decl: String;
 var Error: Boolean);
begin
 if Proc.Name = 'TESTFUNCTION' then begin
 if not ExportCheck(Sender.Comp, Proc,
 [btU8, btDouble, btString], [pmIn, pmIn]) then begin
 Sender.Comp.MakeError('', ecCustomError, 'Function header for
 TestFunction does not match.');
 Error := True;
 end
 else begin
 Proc.aExport := etExportDecl;
 Error := False;
 end;
 end
 else
 Error := False;
end;

The ExportCheck function checks if the parameters match. In this case, btu8 is a boolean (the result type), btdouble
is the first parameter, and btString the second parameter. [pmIn, pmIn] specifies that both parameters are IN
parameters. To call this scripted function, you have to create an event declaration for this function and call that.

type
 TTestFunction = function (Param1: Double;
 Data: String): Longint of object;
//...
var
 Meth: TTestFunction;
 Meth := TTestFunction(ce.GetProcMethod('TESTFUNCTION'));
 if @Meth = nil then
 raise Exception.Create('Unable to call TestFunction');
 ShowMessage('Result: '+IntToStr(Meth(pi, DateTimeToStr(Now))));

It's also possible to add variables to the script engine, which can be used from within the script. To do this, you have
to use the AddRegisteredVariable function. You can set this in the OnExecute event :

procedure TForm1.ceExecute(Sender: TPSScript);
begin
 CE.SetVarToInstance('SELF', Self);
 // ^^^ For class variables
 VSetInt(CE.GetVariable('MYVAR'), 1234567);
end;

To read this variable back, after the script has finished executing, you can use the OnAfterExecute event: VGetInt
(CE.GetVariable('MYVAR')).

The previous functions will make a copy of the values, therefore changes in these variables will not be reflected in
the application, so in order to make sure that the script updates the real value, you can use:

var
 s: string;

procedure TForm1.ceCompile(Sender: TPSScript);
begin
 Sender.AddRegistedPTRVariable('s', 'String');
end;

procedure TForm1.ceExecute(Sender: TPSScript);
begin
 Sender.SetPointerToData('s', @s,
 Sender.Exec.FindType2(btString));
end;

The component version of Pascal Script also supports execution of scripted functions. This works by using the
ExecuteFunction method.

ShowMessage(CompExec.ExecuteFunction([1234.5678, 4321,
 'test'],
 'TestFunction'));

This will execute the function called 'TestFunction' with 3 parameters, a float, an integer and a string. The result will
be passed back to ShowMessage.

Notes:

For some functions and constants, it might be necessary to add: uPSCompiler.pas, uPSRuntime.pas and/or
uPSUtils.pas to your uses list.

The script engine never calls Application.ProcessMessages by itself, so your application might hang, while the
script is running. To avoid this, you can add Application.ProcessMessages to the TPSScript.OnLine event.

It's possible to import your own classes in the script engine. Pascal Script includes a tool to create import
libraries in the /Unit-Importing/ directory.

The /Test/DUnit/ directory contains a DUnit test application for Pascal Script. You will need
http://dunit.sourceforge.net/ to run this.

For examples on how to use the compiler and runtime separately, see the Demo_Import/ and Demo_Kylix.

The Ide-demo and unit-import requires SynEdit http://synedit.sourceforge.net/.
© RemObjects Software, Inc. 2002-2004. All rights reserved. http://www.remobjects.com

